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We present an alternative derivation of upper-bounds for the bulk modulus of both two-dimensional and
three-dimensional cellular materials. For two-dimensional materials, we recover exactly the expression of the
Hashin-Shtrikman �HS� upper-bound in the low-density limit, while for three-dimensional materials we even
improve the HS bound. Furthermore, we establish necessary and sufficient conditions on the cellular structure
for maximizing the bulk modulus, for a given solid volume fraction. The conditions are found to be exactly
those under which the electrical �or thermal� conductivity of the material reaches its maximal value as well.
These results provide a set of straightforward criteria allowing us to address the design of optimized cellular
materials, and shed light on recent studies of structures with both maximal bulk modulus and maximal
conductivity. Finally, we discuss the specific case of spring networks, and analyze the compatibility of the
criteria presented here with the geometrical constraints caused by minimization of surface energy in a real
foam.
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Cellular solids appear widely in nature and are manufac-
tured on a large scale by man. Examples include wood, can-
cellous bone, cork, foams for insulation and packaging, or
sandwich panels in aircraft. Material density, or solid volume
fraction, �, is a predominant parameter for the mechanical
properties of cellular materials. Various theoretical studies on
the mechanical properties of both two-dimensional �2D� and
three-dimensional �3D� structures have been attempted �1�.
Unfortunately, exact calculations can be achieved for cellular
materials with simple geometry only �2�, and numerical
simulations �2,3� or semiempirical models �4–6� are required
in order to study the mechanical properties of more complex
structures. However, expression of bounds on the effective
moduli can be established. Perhaps the most famous bounds
are those given by Hashin and Shtrikman for isotropic het-
erogeneous media �7,8�. In particular, the Hashin-Shtrikman
bounds for the effective bulk modulus in the low-density
asymptotic limit ���1� read:

0 � ��2D� �
E�

4
�1�

for 2D cellular structures �7,9�, and:

0 � ��3D� �
4E�

9

G + 3K

4G + 3K
�2�

for 3D structures �8�. ��2D� and ��3D� are the actual bulk
modulus, respectively, for 2D and 3D structures, and E ,G ,K
are the Young modulus, shear modulus, and bulk modulus of
the solid phase, respectively. These three elastic moduli are
related by: E=4KG / �K+G� for 2D bodies and by: E
=9KG / �3K+G� for 3D bodies.

The search for optimal structures maximizing some spe-
cific modulus �for a given value of solid volume fraction ��,
is of evident practical importance. In a recent study, Torquato
et al. �9,10� identified values of conductivity and elastic
moduli of the two-dimensional square, hexagonal, kagomé,
and triangular cellular structures, and observed that the bulk
modulus of these structures is equal to the HS upper-bound
value. The authors did not attempt to explain this result, al-
though they noticed that such structures under uniform com-
pression deform without bend �affine compression�. Are
these structures the only structures with maximal bulk modu-
lus? And if they are not, can we provide criteria on the struc-
ture of “optimized” cellular materials? More intriguingly,
Torquato et al. noticed that these structures present maximal
electrical �or thermal� conductivity as well. Is this feature
caused by the particular symmetry of the studied strutures, or
is there an underlying relation between the conductivity and
the bulk modulus of cellular materials? We shall answer all
these questions in the present study. Indeed, Durand and
Weaire �11,12� already established necessary and sufficient
conditions on the structure of cellular networks having maxi-
mal average conductivity. A quite similar approach is used in
this paper to show that the very same conditions are also
necessary and sufficient to maximize the bulk modulus of an
open-cell material. There are some evident similarities be-
tween the constitutive laws �Ohm’s law and Kirchhoff’s
laws� of electrical current in wires and those of the thin beam
theory, but complexity is increased in the latter case, the
scalar quantities I �the electrical current� and V �the electrical
potential� being replaced by the vectorial quantities F �force
acting on a beam� and u �the displacement field�.

We consider first the case of a 2D cellular material. We
suppose its solid volume fraction � is sufficiently low, so the
cell edges can be approximated as thin beams. Beams a pri-
ori can be naturally curved and have nonuniform cross sec-
tions, as long as the cross-sectional area sij�l� of each beam
�i , j� �where l refers to the curvilinear coordinate along the*Electronic address: mdurand@ccr.jussieu.fr
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beam, and i and j denote the two nodes linked by the beam�
is small compared with its length lij squared. Let us isolate a
circular portion of this material, of radius R, and impose a
uniform radial displacement −�Rer on its boundary �er is the
radially oriented unit vector; the body is under uniform ten-
sion when �R�0, and under uniform compression when
�R�0, see Fig. 1�. We define the 2D bulk modulus ��2D� of
this structure as:

1

��2D� =
1

	R2

2	R�R

�P
=

2

R

�R

�P
, �3�

where �P is the average load applied on the boundary. We
must point out that the definition above is different from the
usual definition of bulk modulus: In the usual definition, a
uniform radial load is applied on the surface of the material,
while in the present definition a uniform displacement is im-
posed on its surface �allowing to extend the notion of bulk-
modulus to nonisotropic materials�. However, the two defi-
nitions are identical for 2D materials with square or
hexagonal symmetry and for 3D materials with cubic or iso-
tropic symmetry.

The expression of an upper bound can be easily estab-
lished using the principle of minimum potential energy:
Among all kinematically admissible displacement fields (i.e.,
any displacement field twice continuously differentiable sat-
isfying the displacement constraints on the boundary), the
actual displacement (i.e., the one satisfying the equations of
mechanical equilibrium) is the one that makes the potential
energy an absolute minimum. Let u*�r� be the displacement
field which satisfies the equations of equilibrium throughout
the body and the conditions on the boundary, u�r� any kine-
matically admissible displacement field, and U��u*�r��� and
U��u�r��� the respective potential energy associated with

these two displacement fields. Then, according to the prin-
ciple of minimum potential energy:

U��u*�r��� � U��u�r��� . �4�

Let us choose as kinematically admissible displacement
field: u�r�=−��R /R�r, and let us evaluate the potential en-
ergy associated with. We assume the cross section of each
beam is sufficiently small so u�r� is uniform on it �or equiva-
lently, we suppose u�r� is a macroscopic field which has a
uniform value on the beam cross section�. Thus, the stress
tensor expressed in the local orthogonal coordinate system
has only one nonzero component: The axial-axial compo-
nent. Consider an infinitesimal piece of a given beam �i , j�,
of length dl and cross-sectional area sij�l�. We denote rM and
rM +dr the position of its two ends. Their relative displace-
ment �u�rM +dr�−u�rM�� is colinear to the local tangent unit
vector tij =dr /dl, meaning that the piece of beam deforms by
axial compression only. The force Fij�l� acting on the surface
sij�l� is parallel to tij and given by: Fij�l�=Esij�l���R /R�tij,
where E is the Young modulus of the solid phase. The strain
energy associated with such a deformation is �E /2�sij�l�

��R /R�2. Invoking additivity of the potential energy:

U��u�r��� = �
�i,j�
�

0

lij E

2
sij�l�	�R

R

2

dl �5�

�where the discrete sum is carried out on all the beams �i , j��,
and introducing the volume fraction of solid:

� = �
�i,j�
�

0

lij

sij�l�dl/	R2, �6�

we obtain:

U��u�r��� =
	

2
E���R�2. �7�

On the other hand, the actual potential energy U��u*�r��� is
equal to half the work done by the external forces �13�:

U��u*�r��� = 1
2�P2	R�R = 2	��2D���R�2. �8�

Comparison of Eqs. �7� and �8� inally leads to an upper-
bound for the bulk modulus:

��2D� �
E�

4
. �9�

The same argumentation can be used for 3D open-cell struc-
tures: In that case, we find that the bulk modulus ��3D� asso-
ciated with a spherical portion of material of radius R, and
defined as:

1

��3D� =
1

4

3
	R3

4	R2�R

�P
=

3

R

�R

�P
, �10�

is bounded as it follows:

FIG. 1. Circular portion of a 2D cellular network subjected to a
uniform radially oriented displacement −�Rer of its boundary. The
network is made of thin beams with a priori natural curvatures and
nonuniform cross sections. We associate a bulk modulus for such a
strain, defined as: ��2D�= �R /2���P /�R�, where �P is the average
load applied on the boundary.
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��3D� �
E�

9
. �11�

The upper-bound value we obtain is then lower than the HS
upper-bound value 2, giving a sharpest estimation of the ac-
tual bulk modulus value.

I. Criteria for maximal bulk modulus

The upper bounds established above are optimal bounds,
i.e., there exist cellular materials with maximal bulk modulus
value. Criteria on the structure of such materials can be pro-
vided. Indeed, we show in the following that the bulk modu-
lus equals the upper-bound value if and only if the three
following conditions are simultaneously satisfied:

�a� All the edges are straight.
�b� Each edge has a uniform cross-section area:

sij�l�=sij.
�c� Every junction �i� between edges satisfies � jsijeij

=0, where eij are outward-pointing unit vectors in the direc-
tions of adjoining edges.

The demonstration is straightforward: According to the
principle of minimal potential energy and the uniqueness of
the actual displacement field, the inequality 4 becomes a
strict equality if and only if the trial displacement field
u�r�=−��R /R�r is the actual displacement field satisfying
the equations of mechanical equilibrium. Inspection of force
and moment balances along each beam and at each junction
leads to the three necessary and sufficient conditions stated
above. Let us make this precise. Consider a specific beam
�i , j� �see Fig. 2�; at equilibrium, the moments of forces act-
ing on it must balance. Choosing as referencing point for the
moments the node i, and denoting riM =rM −ri, where ri and
rM are the respective position vectors of node i and of any
point M belonging to the beam, we obtain: riM 
Fij�l�
=Esij�l���R /R�riM 
 tij =0. Thus, the tangent unit vector tij

must be parallel to the position vector riM for any point M
belonging to the beam, leading to condition �a�. The forces
acting on any piece �l of the straight beam �i , j� must bal-
ance as well: E��R /R�sij�l�=E��R /R�sij�l+�l� what imme-
diately leads to condition �b�. Finally, mechanical equilib-
rium at every junction i is satisfied if: � jFij
=0, with Fij =−Esij��R /R�eij, leading to condition �c�. The
moment balance at every junction is automatically satisfied
when conditions �a�–�c� are fulfilled, since the force acting
on each straight beam is then axially oriented.

Furthermore, we check that the geometrical constraint on
angles between adjoining edges is also satisfied; if eij� de-
notes the unit vector parallel to the beam �i , j� after defor-
mation and rij =r j −ri, then:

eij� =
rij + u�r j� − u�ri�

�rij + u�r j� − u�ri��
=

	1 −
�R

R

rij

	1 −
�R

R

�rij�

= eij , �12�

what proves the material deforms by affine compression, and
the angles between edges are preserved.

II. Some comments

We first summarize the limits of the theory: The solid
volume fraction is supposed to be low enough for the thin
beam theory to be valid. Moreover the relative imposed dis-
placement �R /R must be small enough so that Hooke’s law
can be used and no mechanical Euler instability occurs when
the body is under compression.

Conditions �a�–�c� are the necessary and sufficient condi-
tions to maximize the average conductivity of a network of
thin wires as well �12�. Why structures satisfying these con-
ditions have both maximal bulk modulus and maximal con-
ductivity? When the three conditions are fulfilled, the force
acting to each beam is then parallel to it, and the correspond-
ing deformation of each beam is an axial compression �or
tension�; no bending or twisting occurs. The “flow” of stress
is parallel to the beams, as for the electric courant, and the
geometry defined by the three conditions corresponds to the
most homogeneous distribution of constraints and currents
through the whole structure.

We must point out that condition �c� is sufficient for hav-
ing no bending in a structure for which conditions �a� and �b�
are fulfilled, but not necessary: There do exist structures
which do not satisfy condition �c� and which deform under
compression without bending �e.g., see structures of Fig. 3�.
Nevertheless, the bulk modulus of such structures will be
below the upper-bound value; condition �c� must be satisfied
in order to have maximal bulk modulus.

Furthermore, it is worth noticing that the three conditions
are independent of the connectivity of the junctions. As a
consequence, there is an infinity of structures with maximal
bulk modulus. Indeed, various examples of structures with

FIG. 2. Schematic of a paticular beam �i , j�. l denotes the cur-
vilinear coordinate of a given point M along the beam. riM and tij

are, respectively, the position vector of point M taken from node i
and the local tangent unit vector.

FIG. 3. Examples of cellular networks for wich condition �c� is
not satisfied and still deform by affine compression �no bending or
twisting of the beams�. However, their respective bulk modulus is
strictly lower than the upper bound value E� /4.
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maximal bulk modulus can be found in literature: We can
cite the square, hexagonal, triangular, kagomé networks
�9,10� as 2D structures and the cubic �2� and Kelvin net-
works �4,5,14� as 3D structures. All these structures satisfy
the necessary and sufficient conditions �a�–�c�, in agreement
with the work presented here. Numerical simulations of ran-
dom 2D �9,15� and 3D �16� isotropic cellular materials have
been also generated. As expected, the bulk modulus of those
materials is found to be always lower than the respective
upper bound values.

III. Spring networks

Spring network model arises in a wide array of different
studies, such as the mechanical properties of cristals, poly-
mer gels, or erythrocyte cytoskeleton. Hookean spring net-
work at zero temperature is similar to a uniform straight
beam network, where beams can deform by axial compres-
sion only. Thus, the results of the present work can be ap-
plied to the specific case of spring networks, just by replac-
ing the quantity Esij / lij for each beam �i , j� by the spring
constant kij of the corresponding spring. It comes that the
bulk modulus of 2D and 3D spring networks are, respec-
tively, bounded by ��i,j�kijlij

2 / �4A� and ��i,j�kijlij
2 / �9V�, where

A and V are, respectively, the network surface area or vol-
ume, and the upper-bound values are reached when the vec-
torial equality � jkijlijeij =0 is satisfied at each junction. Ex-
amples of very common spring networks with maximal bulk
modulus are the 2D square, hexagonal, and triangular lat-
tices, and the 3D cubic lattice, with same spring length l and
same spring constant k. The bulk modulus values for these
networks are, respectively, equals to k /2, k /3�3, �3k /2, and
k /3l �17�, in agreement with our predictions.

IV. Relevance to foam mechanics

As concluding remarks, let us discuss the consequences of
the criteria for structures with maximal bulk modulus on the
mechanical properties of real foams. Foam in the low-density
limit is a particular cellular material: Usually its preparation
involves a continuous liquid phase that eventually solidifies.
Therefore, its structure is controlled by minimization of sur-
face energy, leading to geometrical rules known as the Pla-
teau’s laws �1�, which can be summarized as it follows:

– edges in a 2D foam meet in threefold junctions with
equal angles of 120°.

– lamellae in a 3D foam meet in threefold lamella junc-
tions �usually called Plateau borders� with equal angles of
120°, and Plateau borders meet in fourfold junctions with the
tetrahedral angle: arccos�−1/3�
109,5° �see Fig. 4�.

As a consequence, condition �c� is always satisfied in a
real foam. Usually, condition �b� is nearly satisfied as well.
The validity of condition �a� is more delicate: While it is still
possible to build 2D foams satisfying simultaneously condi-
tions �a�–�c� and the Plateau’s laws �e.g., the hexagonal hon-
eycomb�, this is no longer true for the 3D case: No cell in a
3D foam is a simple polyhedron with straight edges, because
a planar polygon cannot have all angles equal to the tetrahe-
dral angle. Consequently, edges in a real foam must be
curved, violating condition �a�, and the bulk modulus and the
average conductivity of a solid open-cell foam �i.e., a foam
where the lamellae broke up during solidification� is always
strictly lower that the corresponding bounds. While the con-
ductivity drop is not really significant when the edges are
slightly curved �11�, the bulk modulus value can be dramati-
cally decreased, because beams can easily bend or twist. We
conclude that 3D cellular materials manufactured by some
foaming process are probably not the most relevant for the
design of high-bulk modulus/low-density structures.
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